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Abstract

In rocketry, one of the most basic design requirements is that the
rocket flies with stability. In this project, I sought to bring a new
method of achieving stable flight to hobby rocketry by designing a re-
action control system of thrusters to work in a model rocket. I satrted
by building a normal model rocket, then I designed an electronics sys-
tem capable of controlling four valves. Next, I used this electornics
system to control the flow of air from a source to four nozzles. I inte-
grated this system into my rocket, and used an inertial measurement
unit and Arudino microprocessor to control the system. In tests, I
found some issues that are yet to be resolved, but ultimately I found
that a compressed air reaction control system would work for model
rocketry purposes, although such a solution is unnecessarily overcom-
plicated for achieving stability in flight.
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Introduction

At the end of 2015, SpaceX performed the first vertical landing of an orbital
rocket by returning their Falcon 9 to the launch site on the Florida coast.
This achievement was made possible by the use of complex control systems
that make use of inertial reaction wheels, thrust vectoring, control surfaces,
and compressed gas thrusters.

Figure 1: Falcon 9’s cold gas thrusters firing to reorient the first stage

These control methods have developed a lot in the past few decades as the
aerospace industry has grown, but they are only used in orbital-class rockets
and large satellites, meaning they are unproven on small scales. That’s why
I decided to design a compressed gas thruster system for model rocketry.
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Background

Cold Gas Thrusters

Cold gas thrusters are a staple of aerospace control systems. They produce
thrust by releasing compressed gas, typically nitrogen, through a nozzle.
Nozzles are often positioned in clusters and aimed at different directions.
These clusters are usually placed at the ends of the vehicle to maximize their
distance from the center of mass.

Figure 2: An Apollo service module RCS thruster block

Newton’s third law (ΣF = ma = ṁv) tells us that as the compressed
gas exits the nozzle at very high speeds, it imparts a substantial force on
the rocket. For thrusters placed far from the center of mass, these forces
have a long lever arm and they produce a torque, rotating the rocket. A
sophisticated digital system is required to operate the thrusters with great
precision and accuracy.
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Model Rocketry

My interest in this project also stems from my past experience in model
rocketry, and this project coincides with my effort to establish a rocketry
club at Swarthmore. For the unaware, model rocketry hobbyists build their
own rockets and launch them at launch events which are often hosted in
large empty spaces by local rocketry clubs. I flew my rocket in a simple
configuration, without the control system project in it, at the Maryland-
Delaware Rocketry Association’s (MDRA) 278th Eastern Seaboard Launch
(ESL #278) on March 13th, 2022. I used a Cesaroni-brand H-class motor
with an average thrust of 125 Newtons to fly to an altitude of approximately
900 feet.

Figure 3: Swarthmore Rocketry Club at MDRA ESL #278

The rocket motors are commercially available solid fuel single-use motors.
Ammonium perchlorate composite propellant (APCP) is the fuel of choice,
and it’s the same propellant as what’s used in the Space Shuttle and Space
Launch System (SLS) solid rocket boosters. Most use a relatively small
amount of propellant compared to the volume of the rocket’s airframe, and
they tend to burn to completion in 2 seconds or less.
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After the motor burn ends, the rocket coasts upwards, and shortly after
reaching apogee, the motor will detonate a small gunpower pellet which
pushes a parachute out of the rocket, enabling safe recovery.

Figure 4: A particularly violent ejection deploying parachutes
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Theory

Aerodynamic Stability

Stable flight is a desirable characteristic because it reduces drag and min-
imizes stress on the airframe and payload. For a rocket, the condition for
stability is that the center of mass be significantly upstream of the center of
pressure.

For our purposes, the center of mass is the center of gravity, which is the
place in the rocket about which it can be balanced in a uniform gravitational
field. The center of pressure is harder to define, it is typical to use empirical
methods or simulations to find it. We can think of it as the average point
through which aerodynamic forces such as drag and lift act.

Having the center of mass above the center of pressure creates a stabilizing
effect by the following mechanism: Consider a rocket with fins at the rear
ascending vertically. The aerodynamic forces are equal on each fin, and the
rocket continues to move vertically. Now consider a gust of wind which blows
against the rocket from the side. Since the fins have a larger cross-sectional
area, the wind will produce a greater torque where it presses against the fins.
The rocket will begin to rotate and turn into the wind. This appears to be
an undesirable effect, but since the rocket is moving vertically at great speed,
as the rocket begins to rotate into the wind, the fins will stick out on one
side and be shielded by the rocket’s body on the other. The fins that have
been pushed out into the airstream generate a large correcting torque with a
greater lever arm which uses the rocket’s forward velocity to counteract the
destabilizing push from the wind. This type of aerodynamic stability can be
passively achieved by using fins, which pull the center of pressure backwards,
behind the center of mass.
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Figure 5: Passive Aerodynamic Stability

In the aerospace industry, rockets are often not passively stable but in-
stead rely on complex digital control systems and active stabilizing methods
like thrust vectoring or reaction wheels. This eliminates the need for fins,
which reduces the mass of rockets greatly and minimizes drag. This means
that the center of mass is really close to the center of pressure, and without
the control systems working, the rocket would not be stable in flight! The
purpose of the control systems are to make the margin of stability as wide as
possible. These are the benefits that I aim for this project to bring to model
rocketry.
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Nozzle Design

One of my original interests in this project was the design of the nozzles.
In a rocket engine, the nozzle converges, forming a throat of small cross-
sectional area through which flowing high-energy gasses speed up to become
supersonic. After the converging section, there is a diverging section through
which the fast, high-pressure gasses gain speed and lower their pressure.

To find the theoretical speed of air out of the pressurized air tank, we can
use Bernoulli’s Equation:

p+
1

2
ρv2 + ρgh = constant

There is a caveat. Air is compressible and Bernoulli’s equation is for in-
compressible fluids, but since we are dealing with small pressures, this may
serve as a good approximation. The experiment takes place at a constant
altitude, so h remains constant throughout the experiment. p1 = 621 kPa,
p2 = 101 kPa, v1 = 0 m/s, ρ1 = 7.4 kg/m3, ρ2 = 1.2 kg/m3 This allows us
to solve for the velocity of air exiting the tank:

v2 = 29.4 m/s

This ends up being about Mach 0.1 when no nozzle is used and the high-
pressure air is simply released into the atmosphere. When introducing a
converging-diverging nozzle, this method will no longer be useful. Wolfram
Alpha has a useful calculator1 for converging-diverging (de Laval) nozzles.
Assuming T = 273 K and the molecular mass of air equal to approximately
29 g/mol and a heat capacity ratio is γ = 1.4 and an exhaust gas pressure of
1 atm and inlet gas pressure of 100 psi, the calculator claims a air speed of
480.7m/s, which is Mach 1.4!

In reality, I expect the true airspeed out of my nozzle to be somewhere
between these two values. In my experimentation, I believe anything above
Mach 1 to be unreasonable, but I was unable to make any direct measure-
ments of the airspeed.

1de Laval Nozzle Calculator
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Design

Early on in my design process, I made some big decisions about the scope of
the project. I decided to use compressed air as a propellant so I could do a lot
of testing very easily by hooking my system up to an air compressor. Also,
compressed air is a lot less dangerous to work with than fuels and oxidizers.
With combustion, there are problems of acquiring, storing, cooling, mixing,
and igniting. The system is necessarily more complex with separate systems
for fuel and oxidizer needed. Working with compressed air brought up the
least associated problems. I used the Swarthmore engineering department
machine shop’s air compressor, which is capable of achieving pressures of up
to 100 psi, to do all of my ground testing. For a flight test, I would have to
get a large tank capable of storing air at 100 psi, or a smaller tank which
is able to store air at higher pressures, with a regulator to bring the output
pressure down to 100 psi.

I quickly chose to use 4 nozzles placed at right angles because I was
constrained by the volume of my rocket’s airframe and I thoguht fitting more
than 4 in would be unreasonably difficult. 6+ nozzles could theoretically
give me better control, and also allow for me to correct roll with the correct
nozzle placement, but yaw and pitch are the main concerns for determining
the course of the rocket, and since the nozzles fire so briefly, roll can be
considered insignificant for reasonably small angular velocities of roll.

The Rocket

In many ways, the design of my rocket is very standard for a model rocket,
which was intentional. I wanted to have a base upon which to integrate
my system that was simple and familiar. For those unfamiliar with model
rocketry, I will discuss my design choices here in full.

The design process began with simulation. I opted to use OpenRocket2,
which is free and open-source software for model rocket design and flight
simulation. I started by choosing an airframe for the rocket, and I chose 5.5
inch diameter Blue Tube3. The material is a vulcanized fiber tube, similar to
cardboard tubes smaller rockets use, but much stronger and able to withstand
greater forces without crumpling. The diameter I chose was rather large, but
I wanted to pick something with plenty of space for the system hardware.

2https://openrocket.info/
3Blue Tube body tube 5.5 inch diameter
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Figure 6: OpenRocket Schematic

Next, I chose a motor tube, and I again went with Blue Tube, but in a 38
millimeter diameter4. A smaller diameter motor mount would not support
powerful enough motors to lift such a large rocket, but motors at the next
size up would be too powerful, and I was looking for a slower, steadier ascent
to allow for more time for my control system to react.

To give the rocket passive stability, I added 4 trapezoidal fins. I chose the
trapezoidal shape to make the rocket more likely to land on the tail when
it is recovered. Landing on the corner or edge of the fin can often break
the fins if they protrude too much. The size of the fins was chosen using
OpenRocket’s center of pressure calculations to achieve a stability factor of
1.15 caliber, where the acceptable region is between 1 and 3 caliber. I chose
this nearly-marginal stability factor because I knew that adding my control
system near the nose of the rocket would move the center of mass towards
the top by a significant amount, and as designed, the rocket remains stable
with up to 2 kilograms of extra mass at the base of the nose cone, which is
the ideal location for my thruster block to be placed.

I made the fins myself at the campus makerspace out of 1/4 inch plywood
on the laser cutter. The center of the fins is made to be cut out, leaving a
gaping hole in the fin that I then covered with shrink-wrap. This resulted
in a mass savings of 60 grams per fin, and nearly halved the mass of the
fin assembly as a whole, which did a lot to keep the center of mass higher
and increase stability. The tab on the inside edge of the fin is where the fin

4Blue Tube motor mount tube 38 millimeter diameter
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gets attached to the motor mount and centering rings. The centering rings
are also of my own design, they are laser-cut from the same plywood as the
fins, and they center the motor mount in the airframe and provide lots of
surfaces on which to glue the fins into the rocket. A strong kevlar cord is also
glued into the centering rings to serve as an anchoring point for the recovery
parachute.

Halfway up the rocket, I split the airframe in two. The bottom section,
referred to as the booster, has empty space between the fins and the center
which reserved for the parachute and other important recovery hardware.
The top half is designated the payload section, and it has lots of empty
space for the thruster system. The two halves are separated by a solid laser-
cut plywood bulkhead, but they are tied together through the bulkhead so
that they come down on the same parachute. The payload is fitted into the
booster by use of Blue Tube couplers, which fit snugly into the airframe tube.
At the end of the motor’s burning, the ejection charge separates the rocket
by pushing the payload section out of the booster, and this also deploys the
parachute.

The nose cone is of my own design. I made it on a campus makerspace 3D
printer out of PLA plastic. It is elliptical in form, and is about 6 inches long.
I drilled two holes into the coupling section of the nose cone and epoxied in
two nuts, then drilled two corresponding holes into the airframe. This allows
me to use bolts to secure the nose cone onto the top of the rocket, which
is important because it keeps the payload hardware contained during flight,
but it’s easy to remove on the ground if work needs to be done inside.

For the recovery system, I chose a FruityChutes 48 inch diameter ellipiti-
cal parachute5 and I used a FruityChutes 18 inch Nomex parachute protector6

to insulate it from the flames of the ejection charge. I chose a parachute of this
diameter based on simulation predictions and suggested mass and parachute
diameter pairings from the manufacturer.

Lastly, I had to choose which motors I should fly my rocket on. I chose
to use Cesaroni Technology Incorporated7 motors since they have a lot of
options, they are generally easy to find in-stock at multiple online vendors,
and they have a very simple motor design, which makes for easy assembly
and preparation. Since my motor mount was 38 millimeters, I was restricted

5FruityChutes 48 inch diameter elliptical parachute
6FruityChutes X Nomex parachute protector
7http://cesaroni.net/
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to motors of that diameter, and due to the length of the motor tube, I was
restricted to motors that are no longer than 3 propellant grains. For the
inaugural flight, I chose a H1258, which is a 38 millimeter 2-grain motor that
uses Cesaroni’s “Classic” propellant.

Figure 8: Flight simulated in OpenRocket with an H125 motor

For this test flight, my rocket was very conventional. The control system
was still in development, so I flew it like any other model rocket. The flight
went well, no damage occurred. I did not have an altimeter on board, but
the simulation in OpenRocket suggested an apogee around 875 feet. The test
flight itself went well, the rocket flew with stability on a nearly-vertical path,
and I observed a very slow roll rate during the ascent.

8H125 motor data and thrust curve

13

https://www.thrustcurve.org/motors/Cesaroni/266H125-12A/


Figure 9: OpenRocket Finished Model

The Electronics

I designed the electronics system with a few simple goals in mind:

• Operable using on-board power

• Programmable in Arduino

• Able to control 4 valves

• Able to determine vehicle orientation from sensors

For the Arduino, I chose Sparkfun’s SAMD21 Mini Breakout board9 for its
32-bit processor, fast clock speed, generous number of I/O pins, and low
power consumption. To determine the rocket’s orientation, I chose Sparkfun’s
9 Degree of Freedom Inertail Measurement Unit (IMU) Breakout board10. I
picked it for its ability to measure rotational speed and acceleration in three
axes, as well as measure magnetic fields in three axes, giving it the ability to
use the Earth’s magnetic field as a reference frame.

I started by using a breadboard to test the parts in isolation, powering
the Arduino and actuating the valves. I made note of every piece’s voltage
and current limits, and I found by experimentation that the 12V valves were
actually operable down to 6V with minimal changes in their response time.
With this information in mind, I purchased a few 3.7V 2000mAh batteries to

9Sparkfun SAMD21 Mini Breakout
10Sparkfun 9DoF IMU Breakout (ICM-20948)
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use to power the system. With 2 in series, I was able to make a 7.4V source,
enough to operate the valves even with some depletion.

The Arduino operated on 3.3V logic levels, and the IMU used 1.8V logic,
but thankfully the Arduino was able to accept up to 5V inputs and the IMU
was able to accept up to 3.3V inputs, so I used a simple 5V DC-DC buck
converter to bring the 7.4V battery supply down to 5V to power the Arduino,
then I used the Arduino to power the IMU at 3.3V. With this system, I was
able to power all of the boards at the appropriate level and still have high
enough voltages to operate the valves while using just one power source.

Knowing that I had all of the power electronics figured out, I started
designing a circuit capable of controlling a single valve. I put the battery
voltage on one side of the solenoid valve and a IRF2709 Power Transistor11

drain on the other. The source of the transistor was wired to ground, and
the gate was connected to ground by a 1MΩ resistor and to an I/O pin on
the Arduino by a 1kΩ resistor. These resistors were added to prevent an
output from the Arduino at 3.3V from being directly connected to ground.
Putting a significantly larger resistance between the gate and ground than
between the Arduino and the gate kept the voltage at the gate higher, if the
voltage was too low there, the transistor would not turn on. I also added
an 1N194 diode12 going from the unpowered side of the solenoid valve back
to the battery, knowing that if the valve were on for some time, magnetic
fields in the solenoid would continue to induce currents through the solenoid
briefly after the transistor turns off. The diode provides a way for the current
to flow, which prevents nasty voltage spikes. After completing this design
on the breadboard for a single valve, I scaled it up to control 4 valves and I
started soldering everything onto a perfboard small enough to fit inside the
rocket.

11IRF2709 Power Transistor
121N194 Diode

16

https://www.digikey.com/en/products/detail/infineon-technologies/IRF3709/446713
https://www.digikey.com/en/products/detail/onsemi/1N914/978749


Figure 11: The complete electronics package
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The Pressure System

The physical system that I made had to be able to deliver compressed air
through valves into nozzles, be lightweight, and fit inside my rocket.

I chose plastic water solenoid valves from Adafruit13 to control the flow
of compressed air to the nozzles because they are rated for up to 116 PSI
and they are super cheap and rather small. Most of the rest of the design
in this part revolves around these valves and the planned integration of the
whole system into the rocket.

I had to make pipes which split from the compressed air source, so I
designed a part to be 3D printed which would take a 3/4 inch brass pipe
fitting and split it into four 1/2 inch PVC pipe fittings, the correct size for
the valves. The piece was made to fit into the cylindrical 5.5 inch airframe of
the rocket. I used epoxy to glue the valves into their connections here, then
moved on to the part on the outlet end of the valves.

Figure 12: Quarter-sliced view of the gas manifold

13Adafruit Plastic Water Solenoid Valves
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The final piece in this assembly had to be able to take all 4 separate
valve outputs and deliver the propellant through them into 4 nozzles pointed
radially out of the rocket at right angles to each other. I could have made 4
separate pieces, but to save space, I 3D printed a single part with common
walls of the pipes wherever they met. Each pipe snakes around from the
valves towards the central axis of the rocket and then back outwards to a
small chamber immediately before the converging-diverging nozzle.

Figure 13: Quarter-sliced view of the nozzle assembly
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The first assembly of this system was done entirely in PLA and the gas
manifold failed under pressure at about 30 PSI, so I remade it using Onyx14,
a type of carbon-fiber composite with fiberglass reinforcement.

With the manifold printed in Onyx, it held under pressure when it was
tested at up to 100 PSI, so I assembled the whole system and test-fired the
valves. At this point, I made measurements of the force a single engine could
impart at various chamber pressure levels.

Figure 14: Propellant System Assembly

14https://markforged.com/materials/plastics/onyx

20



Integration

Placing the system into the rocket had some challenges. As discussed pre-
viously, my simulation suggested a mass limit of 2 kilograms for my entire
system. In the ground testing configuration, the system only massed 1600
grams, but this likely means that the system would be slightly over the mass
budget with an appropriately sized compressed air tank attached.

I inserted the system into the rocket upside-down at first, intentionally,
so I could use a hose to supply the system with compressed air directly for
testing in the lab. If I were to fly the system, it would be a simple matter
of unbolting it from the airframe and reinserting it in the correct orientation
so it could be fueled from an internal tank.

Control System

The coding is all done in Arduino, and it can be read in full in Appendix A.
The code that I started with comes from the example code bundled in the
library for the ICM-20948 IMU. The example which was most helpful to me
gave the orientation of the IMU in Euler angles at a high refresh rate. Then,
all that remained for me to do is devise a control system to use yaw, pitch,
and roll data to effectively arrest divergent motion.

I started with a simple idea: if yaw or pitch exceed a threshhold, pulse a
valve open for a preset duration to correct it. This is a good starting point,
but it is rather primitive. It is clear to me that a more effective, elegant sys-
tem would rely on other criteria in addition to angular displacement, such as
angular velocity and acceleration, and it would fire the thrusters for variable
durations based on how significant the rocket’s divergence from the vertical
trajectory is. The Arduino might struggle with performing more complex cal-
culations on the fly, but by doing calculations beforehand and using lookup
tables, computing needs could be significantly reduced.

21



Results

To get force measurements, I placed the system on a digital scale before
integrating it into the rocket, and I fired the nozzle continuously for 3 seconds,
and I read out the final value on the scale. I did this for pressures from 20
PSI to 90 PSI in intervals of 5 PSI.

There was significantly more thrust immediately after the valve opened
than there was a half-second or so after the valve opened. More thorough
testing with faster equipment would be able to establish a thrust profile for
a nozzle firing at various pressures.

The results are as follows:

P (psi) TPeak (lbf) TSteady (lbf)

20 0.0625 0.03125

25 0.1125 0.05625

30 0.1625 0.075

35 0.2063 0.08125

40 0.2563 0.1

45 0.3438 0.125

50 0.425 0.1875

55 0.5063 0.225

60 0.55 0.2375

65 0.5813 0.2

70 0.8125 0.2563

75 0.6188 0.2063

80 0.7688 0.2438

85 0.8125 0.225

90 0.9375 0.3813

Table 1: Pressure and Thrust Data
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As expected, there is a positive correlation between propellant pressure
and thrust. The steady state thrust trails the peak thrust by a factor of about
1/3. Since the rocket only weights about 6 lbs without the system installed,
the thrusters are more than capable of of generating enough torque to right
the rocket to vertical from significant angular displacements.

Figure 15: Pressure-Thrust relationship

After integrating the system into the rocket, I conducted tests by holding
the rocket vertically and leaning it from side to side, noting how the nozzles
responded. In the future, I wish to make a gimbal mount which holds the
rocket at the center of mass and allows for free rotation in pitch and yaw (and
optionally, but not critically, roll). Then I would let the rocket swing freely
on the mount after an initial perturbance, and see if the system is capable
of correcting it or not.

I imitated this type of test by hanging the rocket from the air hose that
supplied the system and tilting it from side to side, observing how the nozzles
would release pressurized air to correct the rocket’s orientation, in many
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cases, overcorrecting it. This overcorrection could be solved by reducing the
working pressure or by implementing a more accurate control system

One of the biggest problems I uncovered in testing is that the sensor would
operate significantly more slowly when the valves were open. My program
would hold the valves open for a set duration, but this programmed delay was
warped because the sensor had a lag in delivering data to the Arduino while
valves were open. This resulted in a programmatically-induced stickyness of
the valves. To solve this, I would have to redesign the electornics to move
the valves to a separate power supply.

If these problems could be fixed, the system would be ready for a flight
test. On the first test flight, where I just flew the rocket, I observed pretty
stable flight and a low roll rate, which indicates a very good use case of my
system. For a second flight test, I would have chosen to fly my rocket on a
slightly undersized motor, so the rocket would be slow and therefore more
susceptible to instability since the passive stability features are less useful at
slow speeds.

Discussion

My goal in starting this project was to develop a reaction control system of
thrusters for use in a model rocket. The motivation was to find a method
of achieving aerodynamic stability besides building fins on the rocket. As I
expected from the start, overwhelmingly from the perspective of complex-
ity and cost, fins remain a much better choice for hobbyists who want to
fly straight. Implementing a reaction control system is overengineering the
problem, since model rockets generally only care about flying straight, but
reaction control systems were developed in rockets for precise orbital inser-
tions and maneuvers. With these facts in mind, let’s consider some of the
successes of this project.

The fact that I was able to succeed in building a fuctional RCS thruster
block at low cost (relative to the prices in the aerospace industry) is sig-
nificant. I successfully proved that such a system can be developed and
deployed at such unusually small scales, with minimal computing power and
extremely safe propellant, which means such a system could be used afford-
ably in sounding rockets or small satellites.

What this means for model rocketry is that solutions other than fins could
be acceptable for designing stable rockets. Hobbyists will know that fins are
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often the weak points of a rocket’s design since they protrude out from the
base of the airframe and are often thin and therefore susceptible to breaking.
Fin assembly is generally the most complex and time-consuming part of a
rocket assembly process, and fins also add a lot of drag, reducing apogees, so
there is certainly a desire for an alternative stability solution in the hobbyist
community.

This project proves the feasibility of implementing professional aerospace
solutions at the hobbyist level, and I would be interested in seeing if other
methods such as thrust vectoring and reaction wheels could be used in model
rocketry with success.

Successful implementation of guidance and control hardware in model
rocketry could also have a benefit for safety where one could programmat-
ically command a rocket to fly away from the area where spectators are
located, or where there are an abundance of trees or power lines. Since one
of the biggest challenges in high-power model rocketry is finding an appro-
priately sized launch site, being able to control where the rocket goes could
make smaller launch sites safe options for high-power flights.

Another possibile future for the methods demonstrated in this project is
in a propulsive landing system for a model rocket. This idea was actually
my original inspiration for this project, but I ruled it out as too risky. I
think it could be done with a sufficiently lightweight rocket and much higher
propellant pressures. If the relationship I found between pressure and thrust
is linear, about 1600 psi could be used to slow down a 4 lb rocket in a
well-timed “suicide burn” and bring it to a gentle impact. This would be
achievable, using paintball hardware for instance, which stores compressed
air at pressures of 4500 psi.

Conclusion

In this project, I identified a rapidly-improving technology in the aerospace
industry and implemented it myself on a small scale. I wanted to bring
the sophisticated controls used in orbital rockets to a hobbyist level, and I
succeeded in some regards, but more refinement is necessary before this can
be considered a flight-ready system. Importantly, I learned that there are
not physical limitations that prevent this project from succeeding, only that
it is very, very hard and continued work to develop the controls fully and
conduct multiple flight tests would require lots of patience and perseverence.
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Appendix A: Code

1 // E90 Project: RCS system for model rocketry

// Swarthmore College

3 // Kevin Dee

// 4/18/2022

5 // Lots of code setting up I2C , serial , ports and debugging

comes from Sparkfun ’s IMUExample1_Basics sketch

7 // Libraries

#include "ICM_20948.h" // IMU chip library

9 #include "HeartBeat.h" // Heartbeat LED library

#include "math.h" // Math functions

11
// Serial setup

13 #define SERIAL_PORT SerialUSB

15 // I2C setup

#define WIRE_PORT Wire // Desired wire port

17 #define AD0_VAL 1 // The value of the last bit of the

I2C address.

ICM_20948_I2C myICM; // Creates ICM_20948 object

19
// Heartbeat setup

21 HeartBeat heart;

23 // Pins

const int BLUE_LED = 13; // Blue "stat" LED on pin 13 (same

as valve 4, do not use!)

25 const int RX_LED = PIN_LED_RXL; // RX LED on pin 25, we use

the predefined PIN_LED_RXL to make sure

const int TX_LED = PIN_LED_TXL; // TX LED on pin 26, we use

the predefined PIN_LED_TXL to make sure

27 const int V1 = 2;

const int V2 = 3;

29 const int V3 = 12;

const int V4 = 11;

31
// Variables and constants

33 const int threshhold = 10; // Angular threshhold at which

valves should fire (degrees)

const int firingtime = 50; // Time to open the valves for (ms

)

35 volatile bool inFlight = false;
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37 void setup() {

// Start Heartbeat

39 heart.begin(RX_LED , 1);

41 // Blocking code , waiting for serial to open

SERIAL_PORT.begin (115200);

43 //while (! SERIAL_PORT){};

// SERIAL_PORT.println(F("DMP enabled !"));

45
// Start I2C wire port

47 WIRE_PORT.begin();

WIRE_PORT.setClock (400000);

49
bool initialized = false;

51 while (! initialized){

// Connect ICM to I2C

53 myICM.begin(WIRE_PORT , AD0_VAL);

55 // Print ICM initialization status to serial

// SERIAL_PORT.print(F(" Initialization of the sensor

returned: "));

57 // SERIAL_PORT.println(myICM.statusString ());

59 // If ICM isn ’t ready , try again

if (myICM.status != ICM_20948_Stat_Ok){

61 // SERIAL_PORT.println (" Trying again ...");

delay (500);

63 }

else{

65 initialized = true;

}

67 }

// SERIAL_PORT.println(F(" Device connected !"));

69
bool success = true; // Use success to show if the DMP

configuration was successful

71
// Initialize the DMP. initializeDMP is a weak function.

You can overwrite it if you want to e.g. to change the

sample rate

73 success &= (myICM.initializeDMP () == ICM_20948_Stat_Ok);

75 // Enable the DMP Game Rotation Vector sensor

success &= (myICM.enableDMPSensor(

INV_ICM20948_SENSOR_GAME_ROTATION_VECTOR) ==
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ICM_20948_Stat_Ok);

77
// Configuring DMP to output data at multiple ODRs:

79 // DMP is capable of outputting multiple sensor data at

different rates to FIFO.

// Setting value can be calculated as follows:

81 // Value = (DMP running rate / ODR ) - 1

// E.g. For a 5Hz ODR rate when DMP is running at 55Hz ,

value = (55/5) - 1 = 10.

83 success &= (myICM.setDMPODRrate(DMP_ODR_Reg_Quat6 , 0) ==

ICM_20948_Stat_Ok); // Set to the maximum

85 // Enable the FIFO

success &= (myICM.enableFIFO () == ICM_20948_Stat_Ok);

87
// Enable the DMP

89 success &= (myICM.enableDMP () == ICM_20948_Stat_Ok);

91 // Reset DMP

success &= (myICM.resetDMP () == ICM_20948_Stat_Ok);

93
// Reset FIFO

95 success &= (myICM.resetFIFO () == ICM_20948_Stat_Ok);

97 if (success)

{

99 // SERIAL_PORT.println(F("DMP enabled !"));

}

101 else{

// SERIAL_PORT.println(F(" Enable DMP failed !"));

103 // SERIAL_PORT.println(F(" Please check that you have

uncommented line 29 (# define ICM_20948_USE_DMP) in

ICM_20948_C.h..."));

while (1){}; // Do nothing more

105 }

}

107
void loop() {

109 // Features (in order of priority):

// X 1. Heartbeat LED(s)

111 // X 2. Get angular displacement measurements

// 3. Should wrap values from -180 to 180 smoothly and

continuously (but hopefully this will never be necessary)

113 // X 4. Implement a basic pulsing correction system based

on this alone (fire for X seconds after Y angular
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displacement)

// 5. Use angular velocity measurements to know how much

correction is necessary

115 // 6. Determine how to consider roll

// 7. Detect apogee and close all valves permanently

117 // 8. Detect launch (use an interrupt from a rise in

rolling average of vertical acceleration to set a flag)

119 // Heartbeat LEDs

heart.beat(); // Flash LED (not blocking)

121
// Read the next frame of DMP data from the FIFO

123 icm_20948_DMP_data_t data;

myICM.readDMPdataFromFIFO (&data);

125
if ((myICM.status == ICM_20948_Stat_Ok) || (myICM.status ==

ICM_20948_Stat_FIFOMoreDataAvail))

127 {

// A valid frame was read , more may be available

129 if ((data.header & DMP_header_bitmap_Quat6) > 0) // We

have asked for GRV data so we should receive Quat6

{

131 // Q0 value is computed from this equation: Q0^2 + Q1^2

+ Q2^2 + Q3^2 = 1.

// In case of drift , the sum will not add to 1,

therefore , quaternion data need to be corrected with right

bias values.

133 // The quaternion data is scaled by 2^30.

135 // Scale to +/- 1

double q1 = (( double)data.Quat6.Data.Q1) /

1073741824.0; // Convert to double. Divide by 2^30

137 double q2 = (( double)data.Quat6.Data.Q2) /

1073741824.0; // Convert to double. Divide by 2^30

double q3 = (( double)data.Quat6.Data.Q3) /

1073741824.0; // Convert to double. Divide by 2^30

139
// Convert the quaternions to Euler angles (roll , pitch

, yaw)

141 // https ://en.wikipedia.org/w/index.php?title=

Conversion_between_quaternions_and_Euler_angles&section =8#

Source_code_2

143 double q0 = sqrt (1.0 - ((q1 * q1) + (q2 * q2) + (q3 *

q3)));
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145 double q2sqr = q2 * q2;

147 // roll (x-axis rotation)

double t0 = +2.0 * (q0 * q1 + q2 * q3);

149 double t1 = +1.0 - 2.0 * (q1 * q1 + q2sqr);

double roll = atan2(t0 , t1) * 180.0 / PI;

151
// pitch (y-axis rotation)

153 double t2 = +2.0 * (q0 * q2 - q3 * q1);

t2 = t2 > 1.0 ? 1.0 : t2;

155 t2 = t2 < -1.0 ? -1.0 : t2;

double pitch = asin(t2) * 180.0 / PI;

157
SERIAL_PORT.print(F("Roll:"));

159 SERIAL_PORT.print(roll , 1);

SERIAL_PORT.print(F(" Pitch:"));

161 SERIAL_PORT.println(pitch , 1);

163 // Rudimentary control algorithm

// Fire the valves in a direction if the rocket tilts

past a threshhold in that direction

165 if (pitch > threshhold){

// fire pitchwise -

167 digitalWrite(V4 , HIGH); // Valve 1 open

delay(firingtime);

169 digitalWrite(V4 , LOW); // Valve 1 closed

}

171 else if (pitch < -threshhold){

// fire pitchwise -

173 digitalWrite(V2 , HIGH); // Valve 3 open

delay(firingtime);

175 digitalWrite(V2 , LOW); // Valve 3 closed

}

177 else if (roll > threshhold){

//fire yawwise -

179 digitalWrite(V1 , HIGH); // Valve 2 open

delay(firingtime);

181 digitalWrite(V1 , LOW); // Valve 2 closed

}

183 else if (roll < -threshhold){

// fire yawwise +

185 digitalWrite(V3 , HIGH); // Valve 4 open

delay(firingtime);

187 digitalWrite(V3 , LOW); // Valve 4 closed
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}

189 }

}

191
if (myICM.status != ICM_20948_Stat_FIFOMoreDataAvail) // If

more data is available then we should read it right away

- and not delay

193 {

delay (100);

195 }

}

197

Listing 1: e90.ino
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